• tanwenbing.jpg

當前位置: 首頁 > 研究生院 > 師資隊伍 > 環境工程 > 碩士生導師

檀文炳

  

  【基本信息】

  姓名:檀文炳

  職稱:副研究員

  研究方向:環境地球化學

  電話:15510582963

  Emailwenbingtan@126.com

  【個人履歷】

  教育經歷

  2007.09–2013.07, 北京大學, 博士

  2005.09–2007.07, 中國農業大學, 碩士

  2001.09–2005.07, 海南大學, 學士

  主要工作經歷

  2017.12–至今, 中國環境科學研究院, 副研究員

  2013.07–2017.12, 中國環境科學研究院, 助理研究員

  【科學研究】

  主要研究領域

  [1] 天然有機質的生物地球化學過程

  [2] 污染物的環境地球化學行為

  [3] 同位素與全球環境變化

  代表性研究項目

  [1] 國家自然科學基金面上項目(41977030),土壤不同團聚體組分原位固相有機質電子轉移能力對增溫的響應機制,項目負責人

  [2] 國家科技重大專項課題(2012ZX07203-003),海河南系子牙河流域(河北段)水污染控制與水質改善集成技術與綜合示范,子課題負責人

  [3] 國家自然科學基金青年項目(41501242),土壤原位固相腐殖質的電子轉移機制研究,項目負責人

  [4] 國家杰出青年科學基金項目(51325804),城鎮固體廢棄物處置與資源化,參加

  [5] 國家科技重大專項課題(2018ZX07109),京津冀地下水污染防治關鍵技術研究與工程示范項目,參加

  [6] 國家重點研發計劃課題項目(2017YFA0605003),全球變化對區域水土資源與環境質量的影響研究,參加

  [7] 國家自然科學基金青年項目(51808519),木質素酚調控堆肥腐殖質電子轉移能力機制研究,參加

  [8] 國家自然科學基金青年項目(51508540),基于宏轉錄組的生物強化堆肥微生物胞外呼吸機理研究,參加

  [9] 國家自然科學基金面上項目(41176164),應用生物標志物指標(IP25)重建末次冰期晚期以來白令海海水變化及其環境影響,參加

  [10] 國家自然科學基金面上項目(41072121),大興安嶺森林草原區的炭屑記錄對人類活動的指示意義,參加

  [11] 國家自然科學基金青年項目(41006042),利用微生物標志物GDGT重建全新世渤海灣有機碳的來源及沉積通量,參加

  [12] 國家自然科學基金面上項目(40673017),中國大陸東部植物穩定碳同位素以及現代植被中C4植物生物量貢獻沿溫度梯度帶的變化,參加

  代表性論文

  [1] Tan W, Xi B, Zhao X, Dang Q. 2020. Emerging views on the overall process treatment of municipal domestic waste for the sustainable use of landfills in China. Engineering (https://doi.org/10.1016/j.eng.2020.06.003).

  [2] Tan W, Wang S, Liu N, Xi B. 2020. Tracing bacterial and fungal necromass dynamics of municipal sludge in landfill bioreactors using biomarker amino sugars. Science of the Total Environment 741, 140513.

  [3] Tan W, Liu N, Dang Q, Cui D, Xi B, Yu H. 2020. Insights into the removal efficiencies of aged polycyclic aromatic hydrocarbons in humic acids of different soil aggregate fractions by various oxidants. Environmental Pollution 264, 114678.

  [4] Tan W, Zhao X, Dang Q, Cui D, Xi B. 2020. Microbially reducible extent of solid-phase humic substances is governed by their physico-chemical protection in soils: Evidence from electrochemical measurements. Science of the Total Environment 708, 134683.

  [5] Tan W, Wang G, Zhao X, Dang Q, Li R, Xi B, Jiang J, Zhang H, Li D, Cui D, Jia Y. 2019. Molecular-weight-dependent redox cycling of humic substances of paddy soils over successive anoxic and oxic alternations. Land Degradation & Development 30, 1130–1144.

  [6] Tan W, Yuan Y, Zhao X, Dang Q, Yuan Y, Li R, Cui D, Xi B. 2019. Soil solid-phase organic matter-mediated microbial reduction of iron minerals increases with land use change sequence from fallow to paddy fields. Science of the Total Environment 676, 378–386.

  [7] Tan W, Wang L, Yu H, Zhang H, Zhang X, Jia Y, Li T, Dang Q, Cui D, Xi B. 2019. Accelerated microbial reduction of azo dye by using biochar from iron-rich-biomass pyrolysis. Materials 12, 1079.

  [8] Li R, Zhang Y, Yu H, Dang Q, Yu H, Xi B, Tan W*. 2019. Biouptake responses of trace metals to long-term irrigation with diverse wastewater in the wheat rhizosphere microenvironment. International Journal of Environmental Research and Public Health 16, 3218. (*Corresponding Author)

  [9] Tan W, Xi B, Wang G, He X, Gao R, Jiang J, Zhu B. 2019. Microbial-accessibility-dependent electron shuttling of in situ solid-phase organic matter in soils. Geoderma 338, 1–4.

  [10] Gao X#, Tan W#, Zhao Y, Wu J, Sun Q, Qi H, Xie X, Wei Z. 2019. Diversity in the mechanisms of humin formation during composting with different materials. Environmental Science & Technology 53, 3653–3662. (#Co-first Authors)

  [11] Zhao X#, Tan W#, Dang Q, Li R, Xi B. 2019. Enhanced biotic contributions to the dechlorination of pentachlorophenol by humus respiration from different compostable environments. Chemical Engineering Journal 361, 1565–1575. (#Co-first Authors)

  [12] Tan W, Yu H, Huang C, Li D, Zhang H, Jia Y, Wang G, Xi B. 2018. Discrepant responses of methane emissions to additions with different organic compound classes of rice straw in paddy soil. Science of the Total Environment 630, 141–145.

  [13] Xi B, Li R, Zhao X, Dang Q, Zhang D, Tan W*. 2018. Constraints and opportunities for the recycling of growing ferronickel slag in China. Resources, Conservation & Recycling 139, 15–16. (*Corresponding Author)

  [14] Tan W, Yu H, Huang C, Li D, Zhang H, Zhao X, Li R, Wang G, Zhang Y, He X, Xi B. 2018. Intercropping wheat and maize increases the uptake of phthalic acid esters by plant roots from soils. Journal of Hazardous Materials 359, 9–18.

  [15] Tan W, Zhang Y, Xi B, He X, Gao R, Huang C, Zhang H, Li D, Zhao X, Li M, Li L, Jiang J, Wang G. 2018. Discrepant responses of the electron transfer capacity of soil humic substances to irrigations with wastewaters from different sources. Science of the Total Environment 610–611, 333–341.

  [16] Tan W, Jia Y, Huang C, Zhang H, Li D, Zhao X, Wang G, Jiang J, Xi B. 2018. Increased suppression of methane production by humic substances in response to warming in anoxic environments. Journal of Environmental Management 206, 602–606.

  [17] Tan W, Li R, Yu H, Zhao X, Dang Q, Jiang J, Wang L, Xi B. 2018. Prominent conductor mechanism-induced electron transfer of biochar produced by pyrolysis of nickel-enriched biomass. Catalysts 8, 573.

  [18] Tan W, Xi B, Wang G, Jiang J, He X, Mao X, Gao R, Huang C, Zhang H, Li D, Jia Y, Yuan Y, Zhao X. 2017. Increased electron-accepting and decreased electron-donating capacities of soil humic substances in response to increasing temperature. Environmental Science & Technology 51, 3176–3186.

  [19] Tan W, Wang G, Huang C, Gao R, Xi B, Zhu B. 2017. Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem. Science of the Total Environment 598, 282–288.

  [20] Tan W, Zhang Y, He X, Xi B, Gao R, Mao X, Huang C, Zhang H, Li D, Liang Q, Cui D, Alshawabkeh AN. 2016. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems. Scientific Reports 6, 31987.

  [21] Tan W, Zhou L, Liu K. 2013. Soil aggregate fraction-based 14C analysis and its application in the study of soil organic carbon turnover under forests of different ages. Chinese Science Bulletin 58, 1936–1947.

  [22] Tan W, Wang G, Han J, Liu M, Zhou L, Luo T, Cao Z, Chen S. 2009. δ13C and water-use efficiency indicated by δ13C of different plant functional groups on Changbai Mountains, Northeast China. Chinese Science Bulletin 54, 1759–1764.

  代表性專著

  [1] 席北斗, 何小松, 檀文炳, 趙昕宇. 2019. 村鎮有機廢物堆肥及土壤利用, 化學工業出版社.

  軟件著作

  [1] 余紅, 檀文炳, 張穎, 黨秋玲, 崔東宇. 城市生態環境保護戰略規劃評估系統V1.0. 登記號: 2020SR0354163

  [2] 余紅, 檀文炳, 張穎, 黨秋玲, 崔東宇. 大氣污染防治的GHGs減排效果評估系統V1.0. 登記號: 2020SR0351332

  [3] 余紅, 檀文炳, 張穎, 黨秋玲, 崔東宇. 城市生態環境安全監測預警級管理系統V1.0. 登記號: 2020SR0352123

  [4] 余紅, 檀文炳, 張穎, 黨秋玲, 崔東宇. 水污染防治的減排效果評估系統V1.0. 登記號: 2020SR0351256

  [5] 李丹, 朱建超, 何小松, 黨秋玲, 張慧, 李艷平, 趙昕宇, 檀文炳. 產城融合環境管理數據管理系統V1.0. 登記號: 2018SR036520

  [6] 李丹, 朱建超, 何小松, 黨秋玲, 張慧, 李艷平, 趙昕宇, 檀文炳. 產城融合環境管理決策分析系統V1.0. 登記號: 2018SR030118

  [7] 李丹, 朱建超, 何小松, 黨秋玲, 張慧, 李艷平, 趙昕宇, 檀文炳. 城市生態環境空間監測預警管理系統V1.0. 登記號: 2018SR635749

  主要技術業績貢獻

  【教學工作】

  /博士生課程:

  學術講座

  【社會工作】

  【榮譽獎勵】

  [1] 環境保護科學技術二等獎(第五完成人),2019年,生態環境部

  [2] 紐倫堡國際發明展金獎(第四完成人),2019年,世界知識產權組織

  [3] 河南省科技成果二等獎(第八完成人),2018年,河南省教育廳

  [4] 日內瓦國際發明展金獎(第三完成人),2018年,世界知識產權組織

  [5] 中國專利優秀獎(第六完成人),2018年,國家知識產權局

  【其他】

  主要發明專利

  [1] 檀文炳, 席北斗, 何小松, 高如泰, 李丹. 連續量化標記植物的裝置和方法. 授權專利號: ZL201410535432.2

  [2] 檀文炳, 何小松, 席北斗, 高如泰, 袁英, 崔東宇. 一種分析土壤原位腐殖質電子轉移能力的方法. 授權專利號: ZL201410804534.X

  [3] 席北斗, 檀文炳, 何小松, 李丹, 崔東宇, 潘紅衛. 一種自動提取土壤和沉積物中有機污染物的裝置. 授權專利號: ZL201410178078.2

  [4] 席北斗, 檀文炳, 馬妍, 何小松, 高如泰, 趙昕宇, 張慧. 一種提取與純化土壤和沉積物中穩固態有機質的方法. 授權專利號: ZL201410804510.4

彩神【官网】